• 四联公告
  • 更多内容大数据黑盒

  • 国内外会展类网址汇总
  • 大数据黑盒 | 中国再生资源废纸价格指数...
  • 智能制造成熟度评级
  • 大数据黑盒 | 2025年10月物流业景气指数
  • 大数据黑盒 | 2025年10月的综合PMI产出指数
  • 大数据黑盒 | 伊斯坦布尔欧亚包装展
  • 大数据黑盒 | 快递第一城,比许愿池还灵
  • 大数据黑盒 | 印包设备制造业11月份整体...
  • 大数据黑盒 | 2025年9月份非制造业PMI分析
  • 大数据黑盒 | 废纸价格刷新五年高点
  • 大数据黑盒 | 2025年1-9月造纸和纸制品...
  • 大数据黑盒 | 2025年9月摩根大通全球制...
  • 大数据黑盒 | 政策将把纸箱从普通包材重...
  • 大数据黑盒 | 反内卷与出海将给设备商带...
  • 大数据黑盒 | 2025年9月中小企业发展指数
  • 大数据黑盒 | 黄金白银疯涨预示着全球经...
  • 大数据黑盒 | 9月份中国电商物流指数再...
  • 大数据黑盒 | 商标 vs. 品牌
  • 大数据黑盒 | 2025年9月份制造业采购经...
  • 大数据黑盒 | 2025年9月中国进出口海关...
  • 大数据黑盒 | 2025年9月物流业景气指数
  • 大数据黑盒 | 娃哈哈又出大瓜
  • 大数据黑盒 | 佳能推出工业级瓦楞包装印...
  • 大数据黑盒 | 节后第一天若无条理今年就...
  • 大数据黑盒 | 黄金价格今日动向
  • 大数据黑盒 | 黄金创新高预示着什么
  • 三万个潜在客户+超值营销大礼包为你助力
  • 大数据黑盒 | 2025年9月的综合PMI产出指数
  • 大数据黑盒 | 印包设备制造业10月份整体...
  • 大数据黑盒 | “金九银十”成色不足,需...
  • 大数据黑盒 | 人形机器人10月即将集中爆发
  • 大数据黑盒 | 什么是纸箱指数
  • 大数据黑盒 | 纸包装行业出海是一波设备...
  • 大数据黑盒 | 玖龙的业绩爆发给行业带来...
  • 大数据黑盒 | 碳足迹认证机构名单
  • 大数据黑盒 | 什么是碳足迹认证纸箱
  • 大数据黑盒 | 美国取消大部分巴西纸浆的...
  • 大数据黑盒 | 海德堡与曼罗兰合作-重拾...
  • 大数据黑盒 | 未来3-5年瓦楞纸板生产线...
  • 大数据黑盒 | 今年纸价连续八个月低于去...
  • 大数据黑盒 | 2025年8月份电商物流指数
  • 大数据黑盒 | 2025年8月份非制造业PMI分析
  • 安青袖黑盒 | 2025年8月中小企业发展指数
  • 大数据黑盒 | 2025年1-8月中国物流业总...
  • 大数据黑盒 | 全球纸板产能正在经历一场...
  • 大数据黑盒 | 2025年8月份制造业采购经...
  • 大数据黑盒 | 2025年8月中国进出口海关...
  • 大数据黑盒 | 2025年8月摩根大通全球制...
  • 大数据黑盒 | 印包设备制造业9月份整体...
  • 大数据黑盒 | 2025年9月份印刷业景气预测
  • 海量数据可以帮忙卖书,也能帮忙印刷

    阅读量:109
     你刚好没看过这本,或许会有些心虚,觉得自己学问太差或读书太少。一般人没想去反问对方,有没有看过自己刚刚读过的一本书,如果你真的做了,99.99%的机会得到“没有”的答案。因为国内一年就出版了35万个不同的书出版品(Title),一个出版品可能是一本小说,一本52期的杂志或是365天的报纸。一个人即使每天看一本书,一年365本下来不过看了一年国内出版品的1/100,何况还有许多年来不断出版的书呢,更何况一个礼拜能看完一本书都不容易呀?
      
      书市里书太多,出版社想把自己出版的书卖得好,还真不容易,出版书只好像普通人不断买奖券一样,期望有几次能中奖(畅销书)。所以大部分的出版社会请一些名人在书扉页推荐这本书,为不认识作者的读者增加一些好印象。当然,出版社最喜欢找曾经写过畅销书的作者再写一本,毕竟作家是读者找书的重要线索之一,但是作家难免江郎才尽,勉强凑出一本书,常常令读者失望。所以对那些出过很多书的畅销书作者的新作品,我们都会先挑这本书前后几部分读读,看看有没有似曾相识的感觉,避免被偷懒的编辑忽悠了。
      
      书的选择太多,书店为了增加营业额,自然把书架上的好位置卖给一些出版社愿意付钱推广的新书,否则就把好卖的书放在好位置上,似乎没有更好的办法去推销书店里的书。
      
      网络书店像亚马逊有数百万种书要买,如何推销那么多书,让喜欢看这种书的这种人看到这本书?亚马逊在创业之初,就雇用了十几位书评和编辑,由这些员工操刀,创作书评和提出建议你看完这本书应该看看那本书,这些人发出的“亚马逊声音”在当时大家都认为是亚马逊最珍贵的资产,也是他们让当时其它网络书店的竞争者越赶离亚马逊越来越远。
       接着,亚马逊的创办人执行长贝佐斯(Jeff Bezos)开始了一个网络世界重要的尝试–到数据中去挖宝,如果能帮个别客户按照他们的喜好来建议书,那不是更好吗?一开始亚马逊就拥有了大量的客户的个人信息,还有买了什么书的记录,对那些书关注了最后却没有买单,考虑了多久?一起买了那些书。
      
      一开始亚马逊还是利用传统计算器运算办法,期望透过样本分析,找出客户之间的相似点,这种技术大不了对一个从事工程师工作的客户建议其它工程师职业的客户买类似的书籍;建议一个买了围棋定式书的客户,买围棋残局的书。就像一个不看书的人为读者提出的合理建议,只是因为他有完整的书单罢了。
      
      亚马逊有一个软件工程师格里格(Greg Linden),他在华盛顿大学博士班时主修人工智能,他想出了一个办法,不要去管客户之间的异同,只要管产品之间的关联就好了,格里格这个团队在1998年以此申请专利,把亚马逊的卖书推荐系统整个改头换面,也为海量数据开始了一个全新的应用。
      
      有了这套系统,亚马逊给上网找书的客户两个选择,一个是计算器找出来的建议,一个是内部编辑的书评,这样的并行作业就是要比较那一种建议更有效益,可以说是计算机和人的竞赛。
      
      到底编辑写出的内容还是计算机的建议厉害?那一项能带来更多的营业额?没想到,仅是小小的测试一下,那就发现天差地别,计算机的建议远远胜过精彩的书评。
      
      没有人知道,喜欢看甲作家的书的人也会买乙作家的书,喜欢惊悚小说的人也会喜欢看历史类的书,为什么如此并不重要,计算机透过书与书之间的关联,让客户一次多买一本书,亚马逊就达到目的了。
      
      最后,亚马逊制造书评的部门因而解散了,理由是他们的书评会影响书店的销售。今天亚马逊33%的书是计算机推销出去的。
      
      计算机从海量数据中找出事物的关联性,知道“原来如此”就够了,根本不用去理会“为何如此”,就能解决商业问题?
      
      像谷歌这样的搜索引擎一天就有几十亿的搜寻,几年下来存下来的数据如海洋一样辽阔壮大,谷歌还提供API让你的计算机去海量数据中寻找你要的关联性。
      
      如果你卖的是衣服,你可能从海量数据中发现下一季少女可能流行的颜色或式样。
      
      你是搞印刷的,如果你知道什么是最热门的产品,当然愿意给相关产品的印刷品打个折扣?
    印刷机,瓦楞纸板,模切机,覆膜机,油墨,水印,开槽,胶印,凹印,装订机,切纸机,糊盒机,粘箱机,纸板线,等离子,胶水,热熔胶,喷胶,贴窗机,二片拼接,PE,PP,捆包机,四联,客户云,双片糊盒机,高精度粘箱机,自动供盘,自动码垛,纸箱,彩盒,后道,机器人,钉箱机,贴面机,裱纸机,单面机
    四联网:四联|印刷机|后道|彩盒|纸箱|糊盒机|模切机|瓦线|捆包机|纸板线